47 research outputs found

    The quest for three-color entanglement: experimental investigation of new multipartite quantum correlations

    Full text link
    We experimentally investigate quadrature correlations between pump, signal, and idler fields in an above-threshold optical parametric oscillator. We observe new quantum correlations among the pump and signal or idler beams, as well as among the pump and a combined quadrature of signal and idler beams. A further investigation of unforeseen classical noise observed in this system is presented, which hinders the observation of the recently predicted tripartite entanglement. In spite of this noise, current results approach the limit required to demonstrate three-color entanglement.Comment: 10 pages, 5 figures, submitted to Opt. Expres

    Direct probing of the Wigner function by time-multiplexed detection of photon statistics

    Full text link
    We investigate the capabilities of loss-tolerant quantum state characterization using a photon-number resolving, time-multiplexed detector (TMD). We employ the idea of probing the Wigner function point-by-point in phase space via photon parity measurements and displacement operations, replacing the conventional homodyne tomography. Our emphasis lies on reconstructing the Wigner function of non-Gaussian Fock states with highly negative values in a scheme that is based on a realistic experimental setup. In order to establish the concept of loss-tolerance for state characterization we show how losses can be decoupled from the impact of other experimental imperfections, i.e. the non-unity transmittance of the displacement beamsplitter and non-ideal mode overlap. We relate the experimentally accessible parameters to effective ones that are needed for an optimised state reconstruction. The feasibility of our approach is tested by Monte Carlo simulations, which provide bounds resulting from statistical errors that are due to limited data sets. Our results clearly show that high losses can be accepted for a defined parameter range, and moreover, that (in contrast to homodyne detection) mode mismatch results in a distinct signature, which can be evaluated by analysing the photon number oscillations of the displaced Fock states.Comment: 22 pages, 13 figures, published versio

    Generation of Bright Two-Color Continuous Variable Entanglement

    Full text link
    We present the first measurement of squeezed-state entanglement between the twin beams produced in an Optical Parametric Oscillator (OPO) operating above threshold. Besides the usual squeezing in the intensity difference between the twin beams, we have measured squeezing in the sum of phase quadratures. Our scheme enables us to measure such phase anti-correlations between fields of different frequencies. In the present measurements, wavelengths differ by ~1 nm. Entanglement is demonstrated according to the Duan et al. criterion [Phys. Rev. Lett. 84, 2722 (2000)] Δ2p^−+Δ2q^+=1.47(2)<2\Delta^2\hat{p}_- +\Delta^2\hat{q}_+=1.47(2)<2. This experiment opens the way for new potential applications such as the transfer of quantum information between different parts of the electromagnetic spectrum.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Robustness of bipartite Gaussian entangled beams propagating in lossy channels

    Full text link
    Subtle quantum properties offer exciting new prospects in optical communications. Quantum entanglement enables the secure exchange of cryptographic keys and the distribution of quantum information by teleportation. Entangled bright beams of light attract increasing interest for such tasks, since they enable the employment of well-established classical communications techniques. However, quantum resources are fragile and undergo decoherence by interaction with the environment. The unavoidable losses in the communication channel can lead to a complete destruction of useful quantum properties -- the so-called "entanglement sudden death". We investigate the precise conditions under which this phenomenon takes place for the simplest case of two light beams and demonstrate how to produce states which are robust against losses. Our study sheds new light on the intriguing properties of quantum entanglement and how they may be tamed for future applications.Comment: To be published - Nature Photonic

    Disentanglement in Bipartite Continuous-Variable Systems

    Full text link
    Entanglement in bipartite continuous-variable systems is investigated in the presence of partial losses, such as those introduced by a realistic quantum communication channel, e.g. by propagation in an optical fiber. We find that entanglement can vanish completely for partial losses, in a situa- tion reminiscent of so-called entanglement sudden death. Even states with extreme squeezing may become separable after propagation in lossy channels. Having in mind the potential applications of such entangled light beams to optical communications, we investigate the conditions under which entanglement can survive for all partial losses. Different loss scenarios are examined and we derive criteria to test the robustness of entangled states. These criteria are necessary and sufficient for Gaussian states. Our study provides a framework to investigate the robustness of continuous-variable entanglement in more complex multipartite systems.Comment: Phys. Rev. A (in press

    Accessing the purity of a single photon by the width of the Hong-Ou-Mandel interference

    Full text link
    We demonstrate a method to determine the spectral purity of single photons. The technique is based on the Hong-Ou-Mandel (HOM) interference between a single photon state and a suitably prepared coherent field. We show that the temporal width of the HOM dip is not only related to reciprocal of the spectral width but also to the underlying quantum coherence. Therefore, by measuring the width of both the HOM dip and the spectrum one can directly quantify the degree of spectral purity. The distinct advantage of our proposal is that it obviates the need for perfect mode matching, since it does not rely on the visibility of the interference. Our method is particularly useful for characterizing the purity of heralded single photon states.Comment: Extended version, 16 pages, 9 figure

    Extra phase noise from thermal fluctuations in nonlinear optical crystals

    Get PDF
    We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in Optical Parametric Oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the direct production of multipartite entanglement in a single nonlinear optical system. We cooled the nonlinear crystal and observed a reduction of the extra noise. Our treatment of this noise can be successfully applied to different systems in the literature
    corecore